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Discounted Cash Flow, Section 3.1

Remark: The slightly expanded second edition (Springer, open access) has

different enumeration than the first (Wiley). We use Springer’s

enumeration in the slides and Wiley’s in the videos.,

https://www.amazon.de/Stochastic-Discounted-Cash-Flow-Valuation/dp/3030370801
https://www.amazon.de/Discounted-Cash-Flow-Valuation-Finance/dp/0470870443
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The unlevered firm 1

Companies are indebted, i.e. levered. Why should we consider
unlevered firms, i.e. firms without debt?

Valuation requires knowledge of

▶ cash flows ⇐= from business plans, annual balance sheets etc.

▶ taxes ⇐= from tax law

▶ cost of capital ⇐= from similar companies.

What is a ‘similar company’?

3.1 Unlevered firms,



Similar companies 2

Companies are similar with respect to

▶ business risk

▶ financial risk (= different leverage ratio).

We eliminate the financial risk by determining the cost of capital of
an unlevered firm (unlevering) and then of a levered firm
(relevering).
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3.1 Unlevered firms, Similar companies



Notation 3

levered firm index l
unlevered firm index u

free cash flows (after taxes) F̃CF
u

t

value Ṽ u
t

cost of capital kE ,u
t =Def

E
[
F̃CF

u

t+1+Ṽ u
t+1|Ft

]
Ṽ u
t

− 1

3.1 Unlevered firms, Notation



Value of unlevered firm 4

We have, analogously to chapter 1 (even with the same proof!)

Theorem 3.1 (value of unlevered firm): With deterministic cost
of capital

Ṽ u
t =

T∑
s=t+1

E
[
F̃CF

u

s |Ft

]
(
1 + kE ,u

t

)
· · ·

(
1 + kE ,u

s−1

) .

3.1.1 Valuation equation,



An important assumption 5

An assumption is necessary, which was already used by
Feltham/Christensen, Feltham/Ohlson, also everyday business in
statistics: ‘autoregressive cash flows’.

Remark: This assumption will concern the stochastic structure of
the unlevered cash flows.

3.1.2 Weak autoregressive cash flows,



Independence vs. uncorrelation 6

Autoregressive cash flows, also called AR(1):

F̃CF
u

t+1 = (1 + g)F̃CF
u

t + ε̃t+1.

In finance the usual assumption is: noise terms ε̃t are pairwise
independent. But here we only assume that the noise terms are
pairwise uncorrelated – which is less restrictive:

ε̃t , ε̃s are
uncorrelated if independent if for all

functions f and g

Cov [ε̃t , ε̃s ] = 0 Cov [f (ε̃t) , g (ε̃s)] = 0

3.1.2 Weak autoregressive cash flows, Independent and uncorrelated increments



A formulation using conditional expectations 7

Furthermore, our growth rate gt can be time-dependent – that is
why we speak of ‘weak’ autoregression.

Assumption 3.1 (weak autoregression): There are growth rates
(real numbers!) gt such that for the cash flows of the unlevered
firm

E
[
F̃CF

u

t+1|Ft

]
= (1 + gt)F̃CF

u

t .

Is this the same as definition AR(1) above? Yes, and this will be
shown using our rules!

3.1.2 Weak autoregressive cash flows, Independent and uncorrelated increments



Noise and weak autoregression 8

Define noise by

ε̃t+1 := F̃CF
u

t+1 − (1 + gt)F̃CF
u

t .

Then we can show

1. Noise has no expectation

E [ε̃t ] = 0.

2. Noise terms are uncorrelated

Cov [ε̃s , ε̃t ] = 0 if s ̸= t

3.1.2 Weak autoregressive cash flows, Independent and uncorrelated increments



Proof (1) 9

Noise terms have no expectation:

E [ε̃t+1] = E [ε̃t+1|F0] by rule 1

= E [E [ε̃t+1|Ft ] |F0] by rule 4

= E
[
E
[
F̃CF

u

t+1 − (1 + gt)F̃CF
u

t |Ft

]
|F0

]
by definition

= E
[
E
[
F̃CF

u

t+1|Ft

]
− E

[
(1 + gt)F̃CF

u

t |Ft

]
|F0

]
by rule 2

= E
[
E
[
F̃CF

u

t+1|Ft

]
− (1 + gt)F̃CF

u

t |F0

]
by rule 5

= E
[
(1 + gt)F̃CF

u

t − (1 + gt)F̃CF
u

t |F0

]
by assumption

= 0 QED

3.1.2 Weak autoregressive cash flows, Independent and uncorrelated increments



Proof (2) 10

Noise terms are uncorrelated: (s < t)

Cov [ε̃s , ε̃t ] = E [ε̃s ε̃t ]− E [ε̃s ] E [ε̃t ]︸ ︷︷ ︸
=0

by definition of covariance

= E [ε̃s ε̃t ]

= E [ε̃s ε̃t |F0] by rule 1

= E [E [ε̃s ε̃t |Fs ] |F0] by rule 4

= E
[
ε̃s E [ε̃t |Fs ]︸ ︷︷ ︸

will now shown
to be 0

|F0

]
by rule 5

= 0 QED

3.1.2 Weak autoregressive cash flows, Independent and uncorrelated increments



Proof (2) continued 11

E [ε̃t |Fs ] = E
[
F̃CF

u

t+1 − (1 + gt)F̃CF
u

t |Fs

]
= E

[
E
[
F̃CF

u

t+1 − (1 + gt)F̃CF
u

t |Ft

]
|Fs

]
rule 4

= E
[
E
[
F̃CF

u

t+1|Ft

]
− (1 + gt)F̃CF

u

t |Fs

]
rule 2 and 5

= 0 assumption 2.1.

3.1.2 Weak autoregressive cash flows, Independent and uncorrelated increments



Implications 12

What follows from weak autoregressive cash flows?
Two important theorems:

1. There is a deterministic dividend–price ratio.

2. The cost of capital of the unlevered firm may be used as a
discount rate.

3.1.2 Weak autoregressive cash flows, Independent and uncorrelated increments



First conclusion: Gordon–Shapiro 13

Theorem 3.2 (Williams, Gordon–Shapiro, Feltham/Ohlson):
If costs of capital are deterministic and cash flows are weak
autoregressive, then

Ṽ u
t =

F̃CF
u

t

du
t

holds for a deterministic dividend–price ratio du
t .

(Our first multiple!)

3.1.2 Weak autoregressive cash flows, Gordon–Shapiro



Proof of Theorem 3.2 14

First notice that (s > t)

E
[
F̃CF

u

s |Ft

]
= E

[
E
[
F̃CF

u

s |Fs−1

]
|Ft

]
by rule 4

= E
[
(1 + gs−1)F̃CF

u

s−1|Ft

]
by assumption 3.1

= (1 + gs−1) E
[
F̃CF

u

s−1|Ft

]
by rule 2

= (1 + gs−1) · · · (1 + gt) E
[
F̃CF

u

t |Ft

]
continued

= (1 + gs−1) · · · (1 + gt)F̃CF
u

t by rule 5.

3.1.2 Weak autoregressive cash flows, Gordon–Shapiro



Proof of theorem 3.2 (continued) 15

Ṽ u
t =

T∑
s=t+1

E
[
F̃CF

u

s |Ft

]
(
1 + kE ,u

t

)
· · ·

(
1 + kE ,u

s−1

) from Theorem 2.1

=
T∑

s=t+1

(1 + gs−1) · · · (1 + gt)(
1 + kE ,u

t

)
· · ·

(
1 + kE ,u

s−1

)
︸ ︷︷ ︸

:=1/du
t

F̃CF
u

t see slide above

=
F̃CF

u

t

du
t

QED

3.1.2 Weak autoregressive cash flows, Gordon–Shapiro



Second conclusion: discount rates 16

We want to look at discount rates now. First let us precisely define
them.

Notice that discount rates will depend

▶ on the cash flow we want to value (F̃CF
u

s ),

▶ on the point in time where we determine this value (index t)
and

▶ on the actual time period (index r) we are discounting.

t r F̃CF
u

s

. . .. . .

We use the notation κt→s
r for discounting from r + 1 to r .

3.1.2 Weak autoregressive cash flows, Discount rates



Definition of discount rates 17

Definition 3.2 (discount rates): Real numbers are called

discount rates of the cash flow F̃CF
u

t if they satisfy

EQ

[
F̃CF

u

s |Ft

]
(1 + rf )s−t︸ ︷︷ ︸

value

=
E
[
F̃CF

u

s |Ft

]
(1 + κt→s

t ) · · ·
(
1 + κt→s

s−1

) .

Interpretation of rhs: the way we use discount rates.

Interpretation of lhs: value, follows from fundamental theorem.

3.1.2 Weak autoregressive cash flows, Discount rates



Costs of capital and discount rates 18

Now, finally, our second implication from weak autocorrelated cash
flows.

Theorem 3.3 (equivalence of valuation concepts): If costs of
capital are deterministic and cash flows are weak autoregressive,
then

EQ

[
F̃CF

u

s |Ft

]
(1 + rf )s−t

=
E
[
F̃CF

u

s |Ft

]
(
1 + kE ,u

t

)
· · ·

(
1 + kE ,u

s−1

)
or: costs of capital are discount rates!

3.1.2 Weak autoregressive cash flows, Discount rates



Meaning of Theorem 3.3 19
Notice that sums are equal

T∑
s=t+1

EQ

[
F̃CF

u

s |Ft

]
(1 + rf )s−t

=︸ ︷︷ ︸
fundamental theorem

Ṽ u
t =

T∑
s=t+1

E
[
F̃CF

u

s |Ft

]
(1 + kE ,u

t ) · · · (1 + kE ,u
s−1)︸ ︷︷ ︸

theorem 1.1

.

4 + 6 = 10 = 3 + 7

Theorem 3.3 tells us that summands are equal as well

EQ

[
F̃CF

u

s |Ft

]
(1 + rf )s−t

=
E
[
F̃CF

u

s |Ft

]
(1 + kE ,u

t ) · · · (1 + kE ,u
s−1)

.

4 ̸= 3 and 6 ̸= 7

This result is not trivial at all!
3.1.2 Weak autoregressive cash flows, Discount rates



Proof of Theorem 3.3 20

The shining of the proof. . .

We skip the proof!

3.1.2 Weak autoregressive cash flows, Discount rates



The finite example 21

We assume that kE ,u = 20%. The expectations are

E
[
F̃CF

u

1

]
= 100, E

[
F̃CF

u

2

]
= 110, E

[
F̃CF

u

3

]
= 121.

The value of the firm is given by

V u
0 =

E
[
F̃CF

u

1

]
(1 + kE ,u)

+
E
[
F̃CF

u

2

]
(1 + kE ,u)2

+
E
[
F̃CF

u

3

]
(1 + kE ,u)3

=
100

1 + 0.2
+

110

(1 + 0.2)2
+

121

(1 + 0.2)3
≈ 229.75.

3.1.3 Example (continued), The finite case



Determining Ṽ u
1 22

Although not clear yet why necessary, we want to determine the
market value at t = 1:

E
[
F̃CF

u

2 |F1

]
=

{
121 up,
99 down.

E
[
F̃CF

u

3 |F1

]
=

{
133.1 up,
108.9 down.

hence

Ṽ u
1 (u) =

E[F̃CFu2 (u)]
1+kE ,u +

E[F̃CFu3 (u)]
(1+kE ,u)2

= 121
1+0.2

+ 133.1
(1+0.2)2

≈193.26

Ṽ u
1 (d) ≈158.13

 ⇒ Ṽ u
1 =

 193.26 up,

158.13 down.

3.1.3 Example (continued), The finite case



Determining Q 23

Let rf = 10%. Another additional result is the determination of
the risk-neutral probability Q. Due to theorem 3.3 (or: costs of
capital are discount rates) we have

EQ

[
F̃CF

u

3 |F2

]
1 + rf

=
E
[
F̃CF

u

3 |F2

]
1 + kE ,u

.

Assume that state ω occurred at time t = 2. Then this equation
translates to

3.1.3 Example (continued), The finite case



Determining Q (continued) 24

EQ[F̃CF
u
3 |F2]

1+rf
=

Q3(u|ω) F̃CF
u
3 (u|ω)+Q3(d|ω) F̃CF

u
3 (d|ω)

1+rf

=
P3(u|ω) F̃CF

u
3 (u|ω)+P3(d|ω) F̃CF

u
3 (d|ω)

1+kE ,u =
E[F̃CFu3 |F2]

1+kE ,u .

Also, the conditional Q-probabilities add to one:

Q3(u|ω) + Q3(d |ω) = 1 .

This is a 2×2-system that can be solved for every ω!

3.1.3 Example (continued), The finite case



Q in the finite example 25

0.0833

0.9167

0.0417

0.9583

0.1250

0.8750

0.3750

0.6250

0.7083

0.2917

0.4167

0.5833

time
t = 0 t = 1 t = 2 t = 3

3.1.3 Example (continued), The finite case



The infinite case 26

As above Q can be determined:

Qt+1(u|ω) =
1+rf

1+kE ,u − d

u − d
, Qt+1(d |ω) =

u − 1+rf
1+kE ,u

u − d

regardless of t and ω.
Remark: The factors u and d cannot be chosen arbitrarily in the
infinite case if the cost of capital kE ,u is given, because

d <
1 + rf

1 + kE ,u
< u

must hold in order to ensure positive Q-probabilities.

With kE ,u = 20% the value of the unlevered firm is

V u
0 =

E[F̃CF
u

1 ]

kE ,u
= 500.

3.1.3 Example (continued), The infinite case



Summary 27

We will consider unlevered and levered firms.

Cash flows of the unlevered firm are weak autoregressive, i.e. noise
terms are uncorrelated.

The costs of capital of unlevered firm are discount rates.

The multiple dividend–price ratio is deterministic.

3.1.3 Example (continued), The infinite case
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